V. G. KUMAR DAS**, NG SEIK WENG

Department of Chemistry, University ofMalaya, Kuala Lumpur 22-11, Malaysia

and P. J. SMITH

International Tin Research Institute, Perivale, Greenford, Middlesex UB6 7AQ, U.K.

Received November 3,198O

Bis(β-carbomethoxyethyl)tin dichloride forms *coordination complexes of formula RzSnClzLz,* R_2 SnL'₂ and R_2 SnCl(oxin) where $L_2 = 2Ph_3AsO$, *hen, bipy and L' = oxin, -SCNR''. However, it S*

exhibits weaker acceptor properties towards other ligands including phosphine oxides. Structural features of the isolated complexes both in the solid state and in solution are discussed based on spectral (IR, UV, NMR, Mossbauer) evidence.

Introduction

The title compound is one of several β -carbonylalkyltin chlorides that has received recent attention for its novel synthesis by the AKZO methods $[1, 2]$, but apart from the evidence for intramolecular coordination through its carbonyl functions [2-4], both in the solid state and in solution, there has been no report to-date on its acceptor properties. This paper describes the results of our preliminary investigations in this area.

Experimental

*Part VIII: See Ref. [8]. **The complexes with 1,10-phenanthroline and Ph_a-****Author to whom correspondence should be addressed. As ASO were prepared by reacting stoichiometric quanti-

TABLE I. Analytical and Physical Data for $(MeOCOCH_2CH_2)_2Sn(IV)$ Complexes.

 $R = \text{MeOCOCH}_2\text{CH}_2 -$. ${}^{\text{D}}$ Calcd. values in parentheses. ${}^{\text{C}}\%$ N: 5.27(5.38). ${}^{\text{G}}\%$ Cl: 7.7(7.7). ${}^{\text{E}}$ opo = Ph₂P(O)CH₂P(O)Ph $f_{\%N: 5.04(5.25)}$.

 $392w: 350w (Sn-S)$ $mm s⁻¹$. **Results and Discussion** ^cOverlaps with ligand band. ^b_{B-carbomethoxyethyl bands overlaid.} $^{\text{a}}R = \text{MeOCOCH}_2CH_2-.$

150 *V. G. Kumar Das, Ng Seik Weng and P. J. Smith*

ties of the reactants in $CHCl₃$; for the phosphine oxide adducts the solvent medium used was benzene. In the case of the bipyridyl complex, the ligand was dissolved in ethanol and added to a hot benzene solution of the Lewis acid, and the whole concentrated and cooled to obtain the crystalline product. The bis(oxinate) was synthesised by the method of Westlake and Martin [5] and the chlorooxinate was obtained from this by reaction with an equivalent amount of the diorganotin dichloride in benzene. The bis(N,N-dialkyldithiocarbamato) complexes were prepared by reacting $(MeOCOCH₂CH₂)₂SnCl₂$ with stoichiometric amounts of the appropriate Tl(I) salts $[6, 7]$ of the dithiocarbamates in CHCl₃.

The complexes are listed in Table I together with their analytical and physical data. Mössbauer spectra of the complexes were obtained at 80 K using a constant acceleration microprocessor Mössbauer spectrometer as described previously [8]. The experimental error in the measured values of centre shift (C.S.) and quadrupole splitting $(Q.S.)$ parameters is ± 0.05

Infra-red data on the complexes are assembled in Table II. All compounds show that the carbonyl stretching frequency in the parent Lewis acid at 1675 cm^{-1} is significantly displaced to higher wave numbers, with the exception of the phosphine oxide complexes. This suggests that intramolecular coordination of the carbonyl groups to tin is still dominant in the latter complexes, For the N,N-diethyldithiocarbamato complex, the observation of a igle strong band at 988 cm⁻¹ (v_{cross}) is strongly dicative of a chelating ligand $[9]$ and, therefore, of six-coordinate tin in the compound. The band for the analogous N,N-dimethyldithiocarbamato complex appears as a sharp doublet at 976, 968 cm^{-1} , probably on account of solid state splitting. The spectra of the oxinates show in addition to the Sn-C stretching modes, one other strong absorption in the $500-600$ cm⁻¹ region. This band which is absent in the spectrum of the uncomplexed ligand is reasonably assigned to Sn-0 vibration [IO]. The location also of Sn-N stretching modes in the $380-400$ cm⁻¹ region [10] attests to the chelating nature of the oxin ligand in these complexes. These conclusions are supported by Mössbauer spectroscopic data on the complexes which are listed in Table III, together with the calculated quadrupole splitting values for the complexes based on our previously reported additivity expressions for octahedral [11] and trigonal bipyramidal [12] coordination. Again, except for the phosphine oxide complexes, the agreement between observed Q.S. values and those calculated for octahedral *trans-* or cis-

 $(P-0)^b$;

 $1184m, 1164w, 116m (P-0)^b; 276m$

372vw; 316vw; 292m; 272w

402vw, 346w

388m 394m

 $372m(?)$ $512s$

 $584vw, 560w^c, 544vw$ 560w, 552sh

580w, 560w 578w, 564w

1731vs, 1720sh

1684vs 728vs

 R_2 SnCl₂·bipy
 R_2 SnCl₂·opo
 R_2 Sn(oxin)₂

[735vs, 1712s]

 R_2 Sn Cl (oxin)

564w 562w

1730vs, 1696s

 R_2 Sn(S₂CNMe₂)₂

 R_2 Sn(S₂CNEt₂)₂

1734vs, 1701vs

524_s

488w; 460vw; 442vw; 422w; 363vw;

465vw; 428w; 356w; 292vw; 256s

 $(Sn - Cl)$

346vw; 292w

 1508 vs (C $\overline{\cdots}$ N); 976, 968vs,d (C $\overline{\cdots}$ S);

 $1484s$ (C \cdots N); 988s (C \cdots S); 426w;

442w; 426w; 344m (Sn-S)

Diorganotin Complexes

Compound ^a	$C.S.^{\mathbf{b,c}}$	Obs. Q.S. ^c	Calc. Q.S. ^d
R_2 SnCl ₂	1.50	3.55	
	$(1.50)^e$	$(3.45)^{e}$	
R_2 SnCl ₂ · phen	1.48	3.97	4.04 ^f
R_2 SnCl ₂ bipy	1.46	4.03	3.96 ^f
R_2 SnCl ₂ • 2Ph ₃ AsO	1.34	4.11	4.08^{1}
R_2 SnCl ₂ · 2Ph ₃ PO	1.46	3.62	4.44^{f}
R_2 SnCl ₂ · opo	1.36	3.57	4.32 ^f
R_2 Sn(oxin),	0.90	2.05	1.96 ^g
$R_2Sn(S_2CNMe_2)_2$	1.50	3.30	3.62^{f}
$R_2Sn(S_2CNEt_2)_2$	1.56	3.32	3.62^f
R_2 SnCl(oxin)	1.27	3.09	3.21 ^h

TABLE III. 119m Sn Mössbauer Parameters (mm s⁻¹) for (MeOCOCH₂CH₂)₂Sn(IV) Compounds.

^bRelative to Ba ^{119m}SnO₃. ^c+0.05 mm s⁻¹. ^dUsing the additivity expressions and p.q.s. values ${}^{\bf a}$ R = MeOCOCH₂CH₂-. ^eP. G. Harrison, T. J. King and M. A. Healy, J. Organometal Chem., 182, 17 (1979). ^fFor octahedral in references 11 and 12. trans-R₂Sn and cis-L₂Sn moieties. For the all-trans isomers in R₂SnCl₂L₂, the predicted values would be very slightly larger ($\eta \neq$ 0). ²For cis-R₂Sn octahedral geometry. **^h**For trigonal bipyramidal geome

Compound ^b	Chemical shifts (δ^c)				
	H_{α}	H_{β}	H_c	Other	
R_2 SnCl ₂	1.92	2.93	3.82		
	1.78 ^d	2.47 ^d	3.11 ^d		
	2.10^e	2.97 ^e	3.62^e		
	1.71 ^f	2.75^{f}	3.65 ^f		
R_2 SnCl ₂ · phen	1.74	2.82	3.44		
R_2 SnCl ₂ · 2Ph ₃ AsO	1.79	2.82	3.64		
R_2 SnCl ₂ ·bipy	1.89	2.90	3.76		
R_2 SnCl ₂ ·2Ph ₃ PO	1.92	2.91	3.78		
R_2 SnCl ₂ ·opo	1.90	2.91	3.78		
R_2 Sn(oxin),	1.34	2.44	3.52	7.99 (4-Hoxin); 8.42 (2-Hoxin)	
$R2$ SnCl(oxin)	1.77	2.84	3.63	8.42 (4-Hoxin); 9.12 (2-Hoxin)	
	1.75 ^d	2.74 ^d	3.18 ^d		
$R_2Sn(S_2CNMe_2)_2$	2.25	3.04	3.68	3.42 (N-Me)	
	2.67 ^d	3.13 ^d	3.28^{d}	$2.84^{\rm d}$ (N-Me)	
$R_2Sn(S_2CNEt_2)$	2.27	3.04	3.68	1.28 (N-CH ₂ Me); 3.76 (N-CH ₂)	
	2.70 ^d	3.25 ^d	3.26 ^d	0.93^d (N-CH ₂ Me); 3.38^d (N-CH ₂)	

TABLE IV. PMR Spectral Data for (MeOCOCH₂CH₂)₂Sn(IV) Compounds.⁸

^aIn CDCl₃ at 35 °C unless otherwise indicated. ${}^{\mathbf{b}}$ R = MeOCOCH₂CH₂-. $\mathbf{c}_{\mathbf{p},\mathbf{p},\mathbf{m}}$ downfield from TMS. d In benzene. \mathbf{e}_{In} pyridine. ^fIn DMSO. (H_c) (H_d) (H_{α})

R₂Sn and trigonal bipyramidal equatorial-R₂Sn stereochemistries, as appropriate, is well within the acceptable error margin of ± 0.4 mm s⁻¹ for the additivity model [13]. For the phosphine oxide complexes, the Mössbauer parameters differ little from that of the parent Lewis acid, which has a distorted octahedral configuration with cis- disposition of the halogens and CSnC bond angle of 144° [4]. It is conceivable that the phosphine oxide ligands are located outside the primary coordination sphere of tin in the octahedral crystal lattice, and, perhaps, in proximity to the electron-deficient carbon of the coordinated carbonyl groups. In this respect, an analogy may be drawn with the non-ionic and

octahedral complexes of $Ph₂SnCl₂$ of 1:4 stoichiometry with morpholine, piperidine and β - and γ picolines [14]. The IR spectra of the complexes in the P-O stretching region which would be particularly diagnostic of complexation are, however, complicated by absorptions due to the β -carbomethoxyethyl groups on tin, thus precluding any firm conclusion. Intramolecular coordination by the carbonyl groups, on the other hand, certainly seems disfavoured for the coordinatively unsaturated chlorooxinate complex.

The weaker acceptor property of (MeOCOCH₂- $CH₂$)₂SnCl₂ relative to simple dialkyltin- or diaryltindihalides is further evidenced by the absence of adduct formation upon recrystallising the Lewis acid in pyridine or dimethylsulphoxide, although in solution there appears to be some coordinative interaction based on PMR data (Table IV). Thus the proton H_c and, to some exent, also H_α and H_β of the β -carbomethoxyethyl group resonate at higher magnetic fields in these donor solvents relative to their positions in CDCl₃. Upfield shifts have also been observed in benzene [3], but this has been accounted for in terms of anisotropic shielding arising from complex formation of benzene with the electron-deficient carbonyl group. Of the isolable complexes examined in $CDCl₃$, it would seem that only the $1,10$ -phenanthroline and $Ph₃AsO$ complexes retain their stereochemical integrity. The H_{α}, H_{β} and H, resonances for the bipyridyl and phosphine oxide complexes in CDCl₃ are almost identical in value to the parent diorganotin dichloride, suggesting lability for these ligands in solution. For both $(MeOCOCH₂CH₂)₂Sn(oxin)₂$ and the chlorooxinate their UV spectra in CHCl₃ reveal weak to medium intensity bands at 320 and 334 nm in addition to the strong band at 381 nm. The 320 nm band of the free ligand suffers displacement to longer wavelengths upon chelation [IS], so that the co-presence of this band in the above complexes indicates both chelating and non-chelating ligands in solution. The time-averaged PMR spectrum for the bis(oxinate) shows the 2-H(oxin) and 4-H(oxin) resonances at 8.42 and 7.99 p.p.m. respectively, differing only slightly from the free ligand values of 8.73 and 8.04 p.p.m. [16]. Considerable downfield shifts in these resonances are to be anticipated for strong chelation [17], and, indeed, relative to the bis(oxinate), the chlorooxinate appears to involve a greater extent of chelation in solution.

The H_{α} and H_{β} resonances of the dithiocarbamato complexes in CDCl₃ occur at somewhat lower magnetic fields than for the uncomplexed Lewis acid. Only one sharp signal is observed in both CDCls and benzene for the N-methyl protons in $(MeOCOCH₂CH₂)₂Sn(S₂CNMe₂)₂$, unlike for Me₂-NCSSMe [181. This suggests that the two N-methyl groups become almost equivalent by chelation of

the dithiocarbamato group. Further, in benzene, the spectra of both $(MeOCOCH₂CH₂)₂Sn(S₂CNMe)$, and $(MeOCOCH₂CH₂)₂Sn(S₂CNEt₂)₂$ show the H_{α} and H_{β} resonances displaced further downfield but not H_c, which suffers an upfield shift (Table IV). These trends are explicable in terms of benzenesolute stereospecific interaction at electron-deficient nitrogen which shifts the N-Me and N-Et resonances to higher field relative to their values in $CDCl₃$, as described by Honda et al. [19] for Me₂Sn(S₂- $CNMe₂)₂$, but with the anisotropic shielding effect in the present cases encompassing as well the carbomethoxyl proton (H_c) .

Further studies on the synthesis and structure of coordination complexes of $(MeOCOCH₂CH₂)₂$. SnCl, and of its functionally modified derivatives are currently underway and will be reported at a later date.

Acknowledgement

We wish to thank the International Tin Research Council, London, for permission to publish this paper and the University of Malaya for a research grant under Vote F.

References

- 1 J. W. Burley, R. E. Hutton and V. Oakes, *J. Chem. Sot. Chem. Commun., 803 (1976).*
- *2* R. E. Hutton, J. W. Burley and V. Oakes, *J. Organometal.* Chem., *156,* 369 (1978).
- *3* R. M. Haigh, A. G. Davies and M.-W. Tse, *J. Organometal.* Chem., 174, 163 (1979).
- *4* P. G. Harrison, T. J. King and M. A. Healy, *J. Organometal. Chem., 182, 17 (1979).*
- *5* A. H. Westlake and D. F. Martin, *J. Inorg. Nucl.* Chem., 27, 1579 (1965).
- *6* S. Akerstrom, *Arkiv. Kemi, 24, 495 (1965), Chem. Abstr., 63, 12160 (1965).*
- *I* R. J. Magee and M. J. O'Connor, Inorg. *Chem. Acta, 16, 107 (1976).*
- *8* V. G. Kumar Das, Ng Seik Weng, P. J. Smith and R. Hill, *J. Chem. Sot. Dalton Trans., in* press.
- *9* F. Bonati, S. Cenini and R. Ugo, *J. Organometal. Chem., 10, 257 (1967).*
- 10 K. Kawakami and R. Okawara, *J. Organometal.* Chem., 6, 249 (1966).
- 1 G. M. Bancroft, V. G. Kumar Das and K. D. Butler, *J. Chem. Sot. Dalton Trans.. 2355 (1974).*
- 12 G. M. Bancroft, V. G. Kumar Das, T. R. Sham and M. G. Clark, *J. Chem. Sot. Dalton Trans., 643 (1976).*
- 13 M. G. Clark, A. G. Maddock and R. H. Platt, *J. Chem. Sot. Dalton Trans., 281 (1972).*
- 14 B. A. Goodman, N. N. Greenwood, K. L. Jaura and K. K. Sharma, *J. Chem. Sot., A, 1865 (1971).*
- 5. T. Moeller and F. L. Pundsack, J. Am. Chem. Soc., 76, 617 (1954).
- 16 L. W. Reeves and K. 0. Strdmme, *Canad. J. Chem., 39, 2318 (1961).*
- 17 H. A. Meinema, E. Rivarola and J. G. Noltes, *J. Organometal.* Chem., 17, 71 (1969).
- 18 C. E. Hollowav and M. H. Gitlitz. *Canad. J.* Chem.. 45. 2659 (1967). _
- 19 M. Honda, M. Komura, Y. Kawasaki, T. Tanaka and R. Okawara, *J. Inorg. Nucl. Chem., 30, 3231 (1968).*